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LONGITUDINAL SPRING CONSTANTS
FOR LIQUID-PROPELLANT TANKS
WITH ELLIPSOIDAL ENDS

By Larry D. Pinson
Langley Research Center

SUMMARY

An analysis using linearized membrane theory has been made to obtain spring
constants for ellipsoidal bulkheads to be used in longitudinal vibration analy-
ses of liquid~-propellant launch vehicles. A closed-form solution is presented
for the volume increment and first moment of the volume increment for two types
of loading, namely, constant pressure and hydrostatic pressure. Plots are pre- B
sented from which the volume increment, first moment of the volume increment,
and spring constants for ellipsoidal bulkheads can be obtained. Use of the
equations and plots is illustrated by an example.

INTRODUCTION

Stability problems involving interaction between the propulsion system and
the structure have recently been encountered in launch vehicles. These problems
have led to increased interest in the accurate determination of longitudinal
modes and frequencies of the vehicles. However, knowledge of the elastic char-
acteristics of structural components is required before the modes and frequen-
cies can be calculated.

Among the structural components whose elastic properties must be deter-
mined are the propellant tanks. These tanks, for liquid-propellant launch
vehicles, are typically cylindrical with ellipsoidal ends. Wood, in reference 1,
presents a spring-mass representation of such a tank and shows how the spring
constant can be determined by considering the bulging of the cylindrical part
of the tank and neglecting the flexibility of the bulkhead. Wood then shows how
the spring constant for the flexible bulkhead, once obtained, may be incorpo-
rated into this spring-mass model. The model of reference 1 is reproduced in
figure 1. The spring constant associated with the bulkhead is determined from
a consideration of the structural properties of shells of revolution. Treating
the shell as a membrane, this consideration involves the determination of the
volume change and first moment of the volume change due to pressure loading.
Sylvester, in reference 2, derives a general nonlinear expression for the volume
change in a shell of revolution and applies the linearized form of this expres-
sion to an ellipsoidal bulkhead subjected to constant internal pressure and
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Figure 1l.- Ellipsoidal bulkhead under hydrostatic pressure and its equivalent spring-
mass model.

hydrostatic internal pressure. Sylvester did not, however, derive expressions
for the first moment of the volume increment.

The purpose of the present investigation is to determine the spring con-
stant for an ellipsoidal bulkhead for use in a spring-mass model such as that
presented in reference 1. The spring constant for an ellipsoidal bulkhead is
determined by considering the change in volume, or volume increment, and the
first moment of the volume increment by using an approach somewhat different
to that of reference 2. Constant and hydrostatic pressures are considered in
determining the deformations of the bulkhead, and the results are presented as
plots which may be used to determine the spring constants for ellipsoidal bulk-
heads with arbitrary depth-to-radius ratios.

SYMBOLS
A cross-sectional area of cylindrical portion of tank
a length of semimajor axis
b length of semiminor axis
C constant of integration
c positive constant denoting number of g units of axial acceleration




E Young 's modulus

F(n,v) function defined by equation (26)
G(n,v) function defined by equation (29)
g acceleration of gravity

H(n,v) function defined by equation (37)

h height of liquild in cylindrical portion of tank

k spring constant

M first moment of liquid volume

M first moment of volume increment

mp total mass of propellant

Ng stress resultant in circumferential direction

N¢ stress resultant in meridional direction

n depth-to-radius ratio for ellipsoid of revolution, b/a
P arbitrary pressure

q ratio of liquid height h +to tank radius a

ro = Tp sin )]

ry radius of curvature in meridional direction

ro radius of curvature in circumferential direction

S surface

t bulkhead thickness

Vv total liquid volume

AV volume increment, change in volume of bulkhead due to its deforma-

tion under load

v displacement in meridional direction
W total weight of liquid
W displacement normal to shell, positive outward




Z distance measured from base of shell

€ unit strain in circumferential direction

e¢ unit strain in meridional direction

E distance from free surface of liquid volume to centroid of volume
before deformation

AE’ change 1n location of centroid of liquid volume due to deformation
of bulkhead

0 coordinate of longitude

v Poisson's ratio

3 dummy variable

p mass denéity

) colatitude

w natural circular frequency

Subscripts:

c constant pressure

H hydrostatic pressure

Z reference to coordinate z

4 reference to distance from free surface of liquid volume before
deformation

ANATYSIS

The spring constant for an ellipsoidal bulkhead which is part of a liquid-
propellant tank is determined by using linearized membrane theory for shells.
The bulkhead is assumed to be attached to a cylindrical shell as shown in fig-
ure 1. The depth of the liquid in the cylindrical portion of the tank is h,
the radius of the cylinder and the length of the semimajor axis of the ellip-
soid is a, and the length of the semiminor axis of the ellipsoid is b. Only
the displacements of the ellipsoid are considered herein - the contribution of
the cylinder to the longitudinal spring constant is treated elsewhere (ref. 1,
for example). The assumptions used herein are the same as those of reference 1;
however, a brief discussion of the model is given below.




Spring-Mass Model

The spring-mass model used to represent the propellant-tank combination is
shown in figure 1(c). The deflection of the mass mp 1s taken to be the change
in location of the centroid of the liquid due to the tank deformation. The
liquid is assumed to be incompressible and to act essentially as a rigid body
insofar as it becomes allowable to assume that all its mass is concentrated at
its centroid. The cylindrical shell is assumed to be very thin so that bending
stresses are negligible in calculating deflections. The spring constant k
represents the stiffness of the bulkhead. When this spring constant is found,
it is incorporated into the model as a spring in series with another spring
calculated on the basis of an infinitely rigid tank bottom. The result of this
combination is the spring kj. On a qualitative basis, the model corresponds

approximately to the propellant-tank interaction.

It is the purpose of this paper to establish values of k when the bulk-
head is an ellipsoid of revolution.

Spring Constant

For the purpose of finding the spring constant for the bulkhead, the
cylindrical portion of the tank is assumed to be infinitely rigid. If the
liguid is then assumed incompressible, any movement of the centroid will be the
result of deformation of the bulkhead.

The loading on the bulkhead consists of a hydrostatic component of pres-
sure and a constant component equal to the pressure due to the weight of the
1liquid above the bulkhead-cylinder connection. The loading due to tank prés-
surization (ullage pressure) is assumed to be constant with time and therefore
may be neglected in the dynamic analysis.

The spring constant k used herein is defined as the ratio of the total
force acting on the bulkhead due to the weight of the liquid to the displace-
ment of the centroid of the liquid volume. This total force is equal to pcgV
where V 1is the volume of the mass of liquid, ¢ is a positive constant
denoting the number of g units of acceleration, and p 1is the mass density.

With this definition of k, the problem is to find the resultant force
acting on the bulkhead and the displacement of the centroid of the mass of the
liquid due to the deformation of the bulkhead.

The resultant force is determined as the weight of the mass of liquid in
the tank under an acceleration relative to the tank. That is

W = pcgV (1)

where W 1is the weight of the mass of liquid.

The change in centroidal distance is determined by considering the volume
change of the bulkhead and the first moment of this volume change.




The equation which locates the centroid of the liquid is

-

£ -2 (2)

vhere E is the distance from the free surface of the mass of liquid to its
centroid before tank deformation and MQ is the first moment of the volume

occupiled by the mass of liquid with the reference axis located at the free sur-
face of the mass of liquid. (See fig. 1.)

After the bulkhead deforms, the volume of the bulkhead will change by some
amount AV. The free surface of the liquid in the tank will drop by an amount
which gives a volume change AV in the cylindrical portion of the tank. Let
MMy be the first moment of the volume change in the bulkhead about an axis
located at the junction of the bulkhead and cylinder. Then the change in the
first moment of the volume about an axis located at the free surface of the mass
of liquid before tank deformation is

Ay = MMy + DAV - (3)

where AMC is the change in first moment of the volume occupied by the mass of

liquid about an axis located at the free surface of the mass of liquid before
tank deformation, and a 1is the radius of the cylinder. Since the volume of
the liquid does not change, the change in centroidal distance is

* 2
A _ &M | nav _ (av)
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where AE is the change in the centroidal distance of the mass of liguid due
to deformation of the bulkhead.

By the previous definition the spring constant for the bulkhead is
2
pecgV
k = (5)

2
A
218

where k 1is the spring constant. The quantity (AN)2/2na2 is small when com-
pared with the other terms of the denominator of equation (5) and may be
neglected so that

_ pch2
T MM, + hAV

k (6)




The neglect of this gquantity is consistent with other linearizing assumptions
made herein.

The quantity V is found from the geometry of the tank but the guantities
MM, and AV must be found by integrating the normal displacements due to the

load over the surface of the bulkhead.

Volume Increment

The equation for the volume increment AV for a membrane shell of revolu-
tion with arbitrarily shaped meridian is derived in this section. A typical
shell of revolution and the coordinate system is illustrated in figure 2.

It is assumed in the following derivation that bending stresses are
negligible and that changes in the radii of curvature are negligible. A con-
sequence of the assumption that bending stresses are negligible is that there
is no control over the normal displacement at the boundary of the shell. This
condition makes it impossible to match the displacements of the bulkhead and
the cylinder at the boundary. It is considered however that this is a localized
effect and will not substantially affect the overall distribution of the
displacements.

Base of shell and

Y
/ reference axis

Undeformed
shape

Deformed
shape

Figure 2.- Typical shell of revolution.




From figure 2 the volume increment due to a loading which produces a nor-
mal displacement w 1is

¢ .
AV = 2x \/\ 2 rorywdp (7)
#1
where

ro = rp sin (8)

ry 1is the principal radius of curvature in the meridional direction ¢; ro

is the principal radius of curvature in the circumferential direction 6; and
¢l and ¢2 are the lower and upper limits of the shell, respectively. Refer-

ence 3 gives the displacements for axisymmetric loading as:

W = rpeg - V cot @ (9)

v=sin¢[f Zig);é d¢+(ﬂ (10)

where C 1is a constant of integration which is determined from the requirement
that the meridional displacement v have some known value at a particular
value of § and

£(P) = T1€g - Tofg (11)

In these equations e¢ and €g denote unit strains in the meridional and cir-

cumferential directions, respectively. Substitution of the equations for rg,

w, and Vv into equation (7) yields the following expression for the volume
increment

AV = 2x k/;¢2 rlregee‘sin P ag - 2x L/;fg rlrel;/\ £(¢) df + C{sin P cos @ dg

1 sin @

(12)

If it is required that the meridional displacement v be zero at the lower
limit of the shell, the constant C may be eliminated by putting limits of
integration on the bracketed integral. Introduce a dummy variable of integra-
tion into the integrand of the bracketed integral and place the limits @ and

@ on the integral. The result is




p g
AV = 2x k/ﬁ e rir22€e sin § 4 - 2n ‘jf¢2 riro d/‘ Zgi)g dt|{sin @ cos ¢ ag
¢1 1 ¢1
(13)

where E 1is a dummy variable of integration.

First Moment of the Volume Increment

In the development of the equation for the first moment of the volume
increment, the same basic assumptions which were made for the development of
the equation for the volume increment are made.

From figure 2, the first moment of the volume increment about the base of
the shell due to a loading which produces a deflection w 1is

po
MM = 2n L/;l ToT] 2V d¢ (1%)

where 2z 1is measured from the base of the shell. Following the same procedure
as used in the previous section for determining volume increment, the expres-
sion for the first moment of the volume increment about the base of the shell
for axisymmetric loading is found to be

¢ ¢ [ 8
MM = 2x b/;lz rlreezee sin § af - on k/;12 riToZ ;/; £¢) dt|sin @ cos P dp

1 sin &
(15)

where the requirement has again been made that the meridional displacement v
is zero at the base of the shell.

Application to the Ellipsoidal Bulkhead

In order to apply the general expressions for the volume increment and the
first moment of the volume increment (egs. (13) and (15)), several quantities
which are interrelated through the loading and shell geometry must be estab-
lished. The quantities in equations (13) and (15) which are related to the
loading are the unit strains e¢ and €g* These strains are related to the

stress resultants through Hooke's law and the stress resultants are related to
the loading through the equilibrium of forces on the shell and the geometry of
the shell. Specifically, Hooke's law states that

€ = %(N;é - vNe) (16)



and

g = Etl—(Ne - Vi) (17)

wvhere E is Young's modulus; t 1s the thickness of the shell; v 1s Poisson's
ratio; and N¢ and Ny are the stress resultants in the meridional and cir-

cumferential directions, respectively. To find the stress resultants the radii
of curvature of the shell must be known. Also needed to apply the expression
for the first moment of the volume increment is the quantity =z which is the
distance from the base of the shell to any point on the bulkhead. For the
ellipsoid of revolution these quantities are: (See ref. 3.)

2
r, = e : (18)
(sin2¢ + n2c052¢>3/2
r2 = 1/2 (19)

(sin2¢ + n2c052¢>

-n®a cos f

(sin2¢ + n2c052¢)l/2

where n 1is the depth-to-radius ratio of the ellipsoidal bulkhead. The

(20)

pertinent range of @ is g-ﬁ $< .

Stresses in an ellipsoidal bulkhead.- The stress resultants for the
ellipsoidal bulkhead are found from the equilibrium equations and the external
forces. These forces are related to the pressure distribution. The loadings,
or pressures, being considered herein are divided into two components as illus-
trated in figure 1 - a constant normal pressure equal to pegh and a hydro-
static pressure equal to pecgz. For these loadings, the membrane theory for
shells of revolution (ref. 3, for instance) gives the following stress
resultants for the two components of the load on the ellipsoidal bulkhead:

For constant pressures -

pcgha
= 21
g D o 2.31/2 (1)
2<s1n # + n“cos ¢)
and
cgha cgha 1/2
Ny = e _ kg (sin2¢ + n2cos2¢) (22)

1/2 2
(sin2¢ + n200s2¢> / 2n

10



For hydrostatiec pressure -

3/2
N4 = pcga®n |ndcosdp + (sin2¢ + nZcos® ) (23)
2 3 | sin2¢(sin2¢ + n20052¢)
and
3/2
-pcganeos pcga® {ndcos p + (sin2¢ + n2c052¢)
Ny = - : AT (2k4)

(sin2¢ + n2cos2¢) n sinZp

Having obtalned the stress resultants, the strains may be found by sub-
stituting the stress resultants for the particular component of loading being
considered into equations (16) and (17).

Volume increment for an ellipsoidal bulkhead.- The volume increment for an
ellipsoidal bulkhead is obtained by substituting the strains for the appropriate
loading condition into equation (13), the general expression for the volume
increment. If the thickness of the bulkhead is variable the strains must con-
tain t as a function of . In the present analysis the bulkhead thickness
is assumed to be constant. It is also assumed that the bulkhead is one-half

of an ellipsoid of revolution, thus giving the range of integration % SPS .

The integrations are straightforward, and give the following results for the
volume increment.

For constant internal pressure, after making the substitution ¢ = cos ¢,
it is found that

I
h
&g = B ] (25)
where
d 2
1n i_i;_f_:_E_
oy o (B 3\, s e, e EF)
2 - 8 )_'_ng L 8 n2 -
21 -~ n

The function F(n,v) is plotted against n in figure 3 for various
values of Poisson's ratio. Equation (25) agrees with the result of reference 2.
The volume increment for a hemispherical dome can be found by taking the 1limit
of AVe given in equation (25) as n approaches unity. The result for a
hemisphere is found to be

npcgha4

= (1 - v) (27)

11

oV, =



The simplicity of the geometry of the hemisphere makes the calculation of
the volume increment for this case quite simple and the calculation provides an
independent check, though not an absolute proof, of the validity of the expres-
sion for the volume increment for the ellipsoldal bulkhead. An entirely sepa-
rate calculation was made for the hemisphere and the result agreed with

equation (27).
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Figure 3.- Veriation of F(n,v) wilith depth-to-radius ratio for various values of
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For hydrostatic pressure, after making the substitution ¢ = sin2¢, it is
found that

AVy = npcga [?(n,v] (28)
where
2 3 221'1LL
~-13 + 3n“= + 10n~” + 1735 ovn 02
Glo,v) =~ L5n "9 <LL T n>

+(2-n2+2vn2)Jl‘n2 1n(2 2 f - o (29)
én 1l - Vl - n?

Equation (29) is plotted in figure 4 against n for several values of
Poisson's ratio. The volume increment for the hemisphere subjected to hydro-
static pressure is found by letting n approach unity in equation (28). The
result is

>
Ay = Z22837 (0 L ) (30)

2Bt

Separate calculation of the volume increment for the hemisphere subjected to
hydrostatic pressure yields a result which is in agreement with equation (30).

Equation (29) differs from the result presented in reference 2 in that

the quantity 2vn2 in the last term of the equation is vn2 in reference 2.

Communication with the author of reference 2 confirmed the validity of the
expression as given in equation (29).

First moment of volume increment for an ellipsoidal bulkhead.- Before
proceeding with the development of the relations for the first moment of the
volume increment the following theorem is considered which is presented in ref-
erence 4 on the first moment of the volume increment in any shell: Let p Dbe
an arbitrary pressure distribution and wg be the normal displacements due to
a hydrostatic pressure resulting from a liquid whose unit weight is pcg. The

first moment of the volume increment due to the arbitrary pressure distribution
is the surface integral

AM = fp—-—-dS (31)

pcg
This theorem can be used to determine the first moment due to constant

pressure. If p 1is selected to be the constant pressure pegh, equation (31)
becomes

MMe =h f wy dS (32)
s
13



Note that, by definition, the volume increment due to hydrostatic pressure can

be written as

(33)

G(nw)

Figure 4.- Variation of G(n,v) with depth-to-radius ratio for various values of

Poisson's ratio.
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Therefore, the first moment of the volume increment due to constant pressure is

MM = hAVg (34)

Substitution of equation (28) into equation (34) gives the first moment of the
volume increment created by the constant component of pressure

25
M, = ZER[G(n,v)] (35)

where G(mn,v) is given by equation (29).

Unfortunately no such simple relationship exists for the first moment of
the volume increment caused by the hydrostatic component of the pressure and
one must resort to the method used in obtaining the volume inecrement.

To find the first moment of the volume increment which is caused by the
hydrostatic component of the pressure, the equations for the stress resultants,
equations (23) and (24) are substituted into equations (16) and (17) to obtain
the strains, and the resulting expressions are substituted into equation (15).

This expression is then integrated over the range g-ﬁ ¢ < 1w and it is found
that

MMy = npcga EI( ,v)j (36)
where

H(n,v) = —[27 - 16n - y(2kn - 5]

1n 1+ Vl - n2

2
+[2-6n2+3n”-vn2(2-n2)] -\1-n
9\1 - n°

N EVl - n° - n® + Vl - n®
LB (3 - v) 4 B \/l - n® N 8n2(l + v) ln<l + n) (37)
18 2(1 - n2>\[1 - n 9 n

The function H(n,v) is plotted in figure 5 against n for various
values of Poisson's ratio.

When equation (36) is specialized to the hemisphere by letting n approach
unity, the following expression results for the first moment of the volume
increment in a hemisphere subjected to hydrostatic pressure:

15
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6
MH = ﬂg;fa }'1-(22; 7V) + 8(l9+ V) ln(EJ . (58)

Separate calculations for the hemisphere, as in the checks on the volume
increment, yield an expression which is in agreement with equation (38).
Spring Constants for Ellipsoidal Bulkheads
Development of equations.- With expressions for the volume increment and

first moment of the volume increment, the equation for the spring constant can
be developed according to equation (6).

The volume of liquid within the tank is

V= E%2(3q + 2n) (39)

where q 1is the ratio of the height of liquid within the tank h +to the radius
of the tank a, and n 1s the depth-to-radius ratio of the ellipsoidal
bulkhead.

Adding the volume changes for the two components of loading and the first
moments of the volume changes and substituting these sums, along with equa-
tion (39) for the volume into equation (6) yields the following expression for
the spring constant for the ellipsoidal bulkhead

N 2n(3q + 2n)2 " (40)
9 [E(n,v) + 206(n,v) + o°F(n,v)]

where the functions F(n,v), G(n,v), and H(n,v) are defined by equations (26),
(29), and (37), respectively.

Equation (L40) gives the spring constant for an ellipsoidal bulkhead sub-
Jected to constant and hydrostatic internal pressure. This equation shows that
the spring constant is a function of the geometry of the ellipsoid - the
ratio n; the height of the liquid in the tank - the ratio g; Young's modulus;
the bulkhead thickness; and Poisson's ratio. The spring constant does not
depend on the radius of the tank directly - the radius affects the spring con-
stant only through the ratios n and q.

In certain launch vehicles the oxidizer and fuel are separated by a bulk-
head which is common to both tanks, and geometry similar to that shown in fig-
ure 6 results. The possibility of buckling due to the resulting compressive
stresses in the bulkhead is offset by pressurizing the aft tank. For this con-
figuration the volume change and first moment of the volume change may be cal-
culated by using the functions already developed by finding the volume change
or first moment of the volume change due to a constant pressure pcgh and

17



subtracting the volume
change or first moment of
the volume change due to —F
a hydrostatic pressure T
(shown by the dotted line
on the pressure distribu-
tion of fig. 6).

The equation for the i

volume of the liquid in h
the tank is
e a
V = —3—(3(1 - 2n) (k1) — ¢
I.chb
where the quantities Vv, | _—— — 5
a, g, and n have the 4 N b |
same meaning as before. H I )
F—pogh—

Repeating the pro-
cedure used in the devel-
opment of equation (40)
and noting that the terms (a) Geometry for (b) Pressure
associated with the hydro- an_inverted di?““m‘
static component of pres- bulkhead. o
sure are subtracted, Figure 6.~ Common ellipsoidal bulkhead under hydrostatic
rather than summed, the pressure.
following equation for the
spring constant results:

2
2x(3q - 2n) :
k = E ( (42)

t N —
9[H(n,v) - 2aG(n,v) + a°F(n,v)]

The range of q in this case must be restricted to the range g2 n because
it is assumed that the liquid completely covers the bulkhead.

If the height of liquid is very large compared with the depth of the
ellipsoidal bulkhead, the contribution of the hydrostatic component of pres-
sure to the spring constant will become small compared with the constant com-
ponent of pressure and the expression for the spring constant will approach an
aysmptotic value. This asymptotic value is found by taking the limit of the
expression for the spring constant as q increases without bound. Taking this

limit yields

2n

Properties of equations.- If equation (40) is divided on both sides by the
quantity Et, differentiated with respect to g, and the derivative set equal

18



to zero, an equation results which gives the value of q for which the qdahtity
k/Et 1is a maximum. This equation is

3H(n,v) - 2nG(n,v)
" 36(av) - 2nF(nv) (44)

q:

If this value of g is plotted against n for a value of Poisson's ratio of
1/5, two branches result as shown in figure 7. These branches become asymptotic
to the value n = 0.827. A similar procedure applied to equation (42) yields
the same expression except the sign of the right side of the equation is changed
from negative to positive. The branch having negative values is of no interest
in the discussion of equation (40) because the analysis does not hold when the
liquid surface is below the ellipsoid-cylinder connection in which case a sepa-
rate problem must be solved. How-
ever, for values of n greater
ZOF | than 0.827, positive values of g
exist where the quantity k/Et
is maximum. Figure 8 shows this
effect. The curve for n =1,
that is, the hemisphere has a
maximum at q = 1.48. For values
of n 1less than 0.827, no rela-
10t tive maximum exists. Thus, for
values of n 1less than 0.827,
and for a Poisson's ratio of 1/3,
the spring constant will not
exceed the asymptotic value given
by equation (L43). In discussing
equation (42), opposite conclu-
q OF sions may be drawn. Since the
sign of the right side of equa-
tion (44) is changed the negative
branch of the plot of figure 7
becomes the positive branch and
the positive branch becomes nega-
tive. Thus, for values of n
-10F greater than 0.827, no finite
value of q exists for which the
quantity k/Et is a maximum and
it will never exceed the asymp-
totic value given by equa-
tion (43). For values of n
less than 0.827, positive values

-20™ of q which are greater than n
! ! : = exist such that the quantity
7 8 9 1O k/Et 1is maximum. This effect
is shown in figure 9.
T oeradiue ratio with depth.to-radive ratio for The derivation did not
a Poisson's ratlo of 1/3. include the deformations of the

cylindrical portion of the tank.
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However, this effect can be included in the total representation for the tank

as described in reference 1 and illustrated in the following section.
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Figure 8.- Variation of spring constant for ellipsoidal bulkhead with height-to-radius

ratio for several values of n and Poisson's ratio of 1/3.

Illustrative Example

In order to clarify the procedure used in obtaining the spring constant

and the process of combining the bulkhead spring constant with that of the
cylindrical portion of the tank, an example is presented using typical

parameters.

Suppose it is desired to find the equivalent spring-mass system for a

tank having the following parameters
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in.

Depth-to-radius ratio, n
Liquid height, h,

Young's modulus, E, psi .
Bulkhead thickness, t, in.
Tank radius, a, in.
Poisson's ratio, v

0.827
707
1.0

I

i ina h BOSSE b
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s ratio of 1/3.

Figure 9.- Variation of spring constant for inverted ellipsoidal bulkhead with height-to-radius
ratio for several values of n and Polsson'



The quantity q 1is Ei = 0.75. From figures 3, 4, and 5, it is found that

F(n,v) = 1.150, G(n,v) = 0.695, and H(n,v) = 0.615. Substitution of these
values into equation (40) yields a spring constant for the bulkhead of

2.034 x 106 1b/in.

The spring constant just determined is only part of the complete stiffness
representation for the tank-liquid combination. The complete representation,
from reference 1, is illustrated in figure 1. The equations used to obtain the

various spring constants are taken directly from reference 1; however, equa-
- vK - K
tion A.21 on page 81 of the reference should read Kj; = I 2 , not Kj = 2

-V 1 - vf
2 - 2v \AE
3 - 2y2)h

kl = 5 oy A_E T ()‘*5)
3 2v2 h
vk
kp = = _1v (46)
k3 = Ah-—E - Vkl ()4“7)

Substituting the given values into eguations (45), (46), and (47) and assuming
the cylindrical tank wall to have the same thickness as that of the bulkhead,

the following results are obtained: kj = 1.011 x 106 1b/in.,
Kp = 0.506 x 10° 1b/in., and ks = 3.852 x 106 1b/in.

The effect of incorporating the spring constant for the bulkhead into the
spring-mass model of figure 1 may be evaluated by comparing the values obtained
from equations (45), (k6), and (47) with those obtained by assuming that the
bulkhead is infinitely stiff. If the bulkhead is rigid equations (46) and (L47)
are valid but equation (45) becomes

2 - 2y) AE
ky = - (48)
1 (3 _5,2) &

By using equation (48) along with equations (L46) and (47), the following results
are obtained for the system with a rigid bulkhead: k; = 2.011 X 106 1b/in.,

ko = 1.005 X 106 1b/in., and k3 = 3.519 X 106 1b/in. The effect of including
bulkhead flexibility, therefore, is a reduction of 50 percent in both k3 and
ko and an increase of 9 percent in k5.

The effect of bulkhead flexibility on the frequency may be determined by
assuming the ends to be fixed. The uncoupled liquid frequency is
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+ k
® = _151.72 (49)

where mp 1s the actual 1liquid mass. Since the frequency varies with the.
1/2 pover of the sum kj + kp, the effect of including the bulkhead spring con-
stant is a 42-percent reduction in the frequency for this example.

CONCLUDING REMARKS

An analysis was made to obtain spring constants for ellipsoidal bulkheads
to be used in longitudinal vibration analyses of liquid-propellant launch vehi-
cles. The analysis was based on linear membrane theory of shells. Closed-form
expressions for the spring constant for ellipsoidal bulkheads subjected to con-
stant and hydrostatic pressure have been presented. The volume increment and
first moment of the volume increment for these pressures were derived. Plots
are presented to aid in the evaluation of the spring constants for bulkheads of
arbitrary depth-to-radius ratios. The relation of the spring constant of the
bulkhead to the entire tank model has been discussed. The procedure has been
illustrated by means of an example. The example showed that including the bulk-
head flexibility caused a significant change in the frequency of the particular
system considered.

The work presented herein could be extended by computing the spring con-
stant for other cases, among which are the following: (1) the case in which
the level of the liquid is below the ellipsoid-cylinder connection, or (2) by
computing the spring constant for another configuration, say a conical shell.
The work could further be extended by directing efforts toward the improvement
of the propellant-tank model.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., August 13, 196.L.
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